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Project Summary

(Summary of research carred out wnder ONR Contract No. N00014-85-K-0661 and
continued under ONR Grant No. N000I4-904-1143)

Ibis document serves as the fina technical report of ONR Grant No. N00014-
90-i-I 143, which was ftrmdecl as a continuation of work carried out unde ONR Contact
No. N00014-85-K- 0661. As part of t Initial project I developed a schema-basedI
model of teaching and learning for the domain of arithmetic word problems (Marshall,
Puibe, & Smith, 1987). Thle schemas empbasize the basic situations that can be
contained in such problems. A central focus of the research was to create a model that
applied equally well to Issues of memory organization, teaching and learning,
instructional development, and diagnosis of student learning.

A core set of situation was Identified, and a series of sUdies verified that the
situations were sufficient for describing virtually all legitimate word problems (Marshall,
1990). A model of schema knowledge was constructed for each of the basic situations.
Each schema model specified the feaure knowledge, constraint knowledge, planning
knowledge, and Imlmnainknowledge required to use the schema successfuzlly. An
extension of the basic schema model yielded ways in which affective components may
also be part of schema knowledge (Marshall, 1989). Attention was also given to ways in
wich different types of schema knowledge could be easily assessed (Marshall, 1988).
Moire recently, I have demonstrated that the schema theory can be applied easily to two
other domains, elementary statistics and rational number instruction (Marall, in press

The Instructional system cale STORY PROBLEM SOLVER (SPS), was
designied to provide Instruction about: these situations In such a way as to foster the
development of appropriate schemas by Individuals (Marshall, Barthull, Brewer, & Rose,
1989). The system consists of (a) a series of lessons requiring about 6-8 hours for
completion and (b) a flexible problem-solving enivironent. Both of these components
were designed to focus on specific aspects of schema knowledge required In solving
prblms

In the lessons, each component of schema knowledge was addressed Implicitly
through short Instructional segments and related exercises. Students were Intoduced to a
set of icons depicting the siutions, and they were encouraged to use the icons to
represent the various situations occurring in specific problems. A set of experiments
revealed dhat students did develop the specific types of schema knowledge targeted by
SPS and tdo the Icons wine a key part of thei knowledge (Mushali & Brewer, 1990).
Marcum, we were aWe to dot the hwalioem of sdhmas over The comrse of
lautauctlos through ladvidiul Inerv~ew wit our subjects (Marell, in pres b).

Maw secood put of die sysion Is a flexible Problema-Soving Etwiroment, PSA,
in ulch students- can expedmeavt with I I bymanipulatibg die
ica.. described above. Soudonsm = i abe o aun a soboot at 1con to uPprPe wa a
problem ad to HlA 9m lod lo 1 1r ft coxneclo in dhe pricblem They
Rave CPO= to 03*Wu ton d I 11c 19 iIvie upsew ofea nel m, to Cory out
cicio lo sdX ie~r f ftysoMd in, or ID have ft YM sytemdslay a
PON"bl ofsaa t I Alsm Thi anvlmmies Was doveloped vifie do



original ONR Contract and evaluated under the project continuation as Grant N00014-
90--1143 (Marshall, 1991).

The project yielded three major products. First, I created a working computer-
based system of instruction that can be used to teach students about solving word
problems. The system has been used successfully with about 100 subjects to date
(primarily college students with weak problem solving skills). Second, I have developed
and refined a theory of schema strcture and acquisition. The theory builds on the
general nature of schema knowledge found In the cognitive science and cognitive
psychological literatur but sm considerably beyond it In particular, the theory allows
operatonal definition of key components of a schema and thus allows empirical tests of
whether individuals have acquired these pieces. Third, as a direct consequence of
studying the acquisition of schema knowledge and attempting to evaluate students'
learnng, I have formulated a new model of assessment. T[he model Is a network model,
and It stipulates the need for assessing both the number of nodes and the connectivity
within the net Thus, the project results allow us to use the theory of memory
organization (i.e., schema theory) to model learning, instruction, and assessment. This
last result has had the most far-reaching Impact. As can be seen from the attached list of
publications aW presentations, I have been invited to make a number of contributions
about assessing schema knowledge. The Importance here is that the theory developed
during this project Is unique In its use of a common model for learning, instruction, and
assessment. Moreover, the theory provides the basis for a linkage between a
psychological theory of memory/learning and a new psychmetric theory of testing.

Finally, the poject also yielded several important modeling results. We have
simulated successfully the performance of students as they respond to the computer
exercises. The simulation uses estimates of their schema knowledge as revealed in
interviews. Both correct and incorrect responses are equally well estimated. We have
also employed a series of connectionist models which learn to classify the situations
epessed in story problems. The modeling continued under the project renewal and is
the fot of the report which follows. The report has two secton. The first sectim
descrbes statistical and cognitive models of pfomance on the Initial recognition task
In the Insmctional system. The models described deein successfully simulate actual
student performance on an item-by-item basis. The second section describes the full
model of schema instantiation. This Is a hybrid model, incorporating both a production-
system and a connectionist network. It successfully evaluates multi-step story problems,
recognizes their important relational components, and soves the problems for the correct
numerical solution.

At the end of this smmay Is a list of publications, technical reports, conference
iresenteo3, and Inited addrsms that report Pes-h from these two projects. Much
of do work spa,d both of them. Most of Me reie-h results will be reported in a
book now being pepred ft pubhim by the Cambridge Ualverslty Prew The book
should be comapleted by Sepltmbe 1992
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Statistical and Cognitive Models of
Learning through Instruction,[

Sandra P. Marshall
Department of Psychology
San Diego State University
San Diego, CA 92182-0315

Abstract

This chapter uses statistical and cognitive models to evaluate the
learning of a set of concepts about arithmetic word problems by a group of
students. The statistical model provides information about how the group of
students as a whole performed on an identification task involving word-
problem situations and shows differeces among subgroups. The cognitive
model simulates the performance of each student and yields details about
how learning vaied from one individual to another. It is a connectionist
model in which the middle layer of units is specified a priori for each
student, according to the student's level of understaning expressed In an
interview. The chapter concludes with a detailed comparison of the
simulated responses with the observed student responses.

INTRODUCTION

The learning investigated here occured as part of a study in which
students received computer-based instruction about arithmetic ward
problems. The central topics of the instruction were five basic situations
that occur with great frequency in word problems: Change, Group,
Compare, Resuae, and Vary. 7'Te instruction had three main segments:
(I) the introduction, in which the situations were described; (2) an in-depth
exploration, in which details of each situation were elaborated and presented
diagrammatically; and (3) the synthesis, In which combinations of situations

To appear in Marvwitz, A. L a Cbilpa, S. (Ed.), Copidw Model of
Comk ZLmmk& Newe MA. Kmwur Ac ac Pubfishe.
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were introduced together with planning and goal-setting techniques. 2 For
each of the three parts of instruction, students engaged in multiple practice
exercises. The study reported in this chapter concerns only tQ first
segment of instruction-the introduction to the situations-and the primary
focus is the nature of the knowledge that individuals gained from that
introductory instruction.

This chapter describes two analyses of what individuals learn from
instruction. Both analyses are needed. In the first case, learning is
examined in a traditional experimental paradigm, using established
statistical procedures. Group features, rather than individual characteristics,
receive greater emphasis in this paradigm, and conclusions drawn from the
analysis describe group commonalities. In the second case, learning is
examined by means of a cognitive model that simulates individual
pmformance. In this analysis, individuals' cbacteristics are studied, and
conclusions apply separately to each individual. As I indicate below, the
information gained from each analysis is valuable in a study of learning.
Neither one alone provides the complete picture.

The questions of interest in the research are what is the new knowledge
retained in memory as a result of instruction, when is it retained, and which
parir of it ae later accessed and retrieved During Instruction, some new
information is (presiumably) acquired and added to an individual's available
knowledge store. Not all possible information is taken in, and individuals
vary in the type and amount of new knowledge that enter memory. It is the
rare instance in which all learners learn exactly the same thing from a single
instructional lesson. More often, some learners noticeably remember a great
deal of the new information while others remember almost nothing.

The Instructional Domain

This section provides a short description of the five situations used in
instruction. The situations me Change, Group, Compare, Restate, and
Vary, and they represent uniquely almost all simple stories found in
arithmetc stoy problems (Marshda, 1991).

The Change situation Is dhmcterized by a permanent alteration over time
in a measurable quantity of a single, specified thing. Only the quantity

associated with one thing is involved in the Change situation. It has a

2 Det&ls aboo the --mute-bged Igrctim cma be fond in Marshall,
Bahuli, Brew, & Ra (iA), a technical report avalawb from the author.
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beginning state and an end state, with some intervention which causes a
transition from beginning to end. Usually, three numbers are of importance:
the amount prior to the change, the extent of the change, and the resulting
amount after the change has occurred.

A Group situation is present if a number of small distinct sets are
combined meaningfully into one large aggregate. Thus, the Group situation
reflects class inclusion. "The grouping may be explicit or implicit If
explicit, the solver is told in the problem statement which small groups are
to be united. If implicit, the solver must rely on his or her prior semantic
knowledge to understand the group structure. For example, in a situation
involving boys and girls, the solver would typically be expected to know
that boys and girls form a larger class called children. The solver also
would be expected to understand that the members of the subgroups (i.e.,
boys or girls) retain their identity even when combined into a larger group
(i.e., children). Three or more numbers are necessary in a Group situation:
the number of members in each of the subgroups as well as the overall
number in the combination.

The Compare situation is one in which two things are contrasted to
determine which is greater or smaller. The numerical size of the difference
between the values is unimportant and may not even need to be computed.
The Compare situation relies heavily on prior knowledge that individuals
have about relations. Most frequently, the Compare situation requires the
solver to choose either the larger or smaller of two values when the
operative relation is stated as a comparative adjective or adverb (e.g.,
faster, cheaper, shorter, more quickly). The objective is the determination
of whether one's response should be the larger or the smaller of the known
values. This situation most typically occurs as the final part of a multi-step
item. For instance, one often sees problems in which the solver is expected
to decide after several problem-solving steps which of two Items offered for
sale is the better buy. This final determination is a Compare It requires
only the recognition of which of the two items is less costly-it does not
require the computation of how much less. 3 Most Compare items involve
values for only two objects, -although it Is certainly possible to make
comparisons among three or more.

3 It should be noted that the Cnpm gi defined here differs from the
semantic relatiom of the same ame developed by Riley, Greeno, and Heller

7

4



The Restate situation contains a specific relationship between two
different things at a given point in time. The relationship exists only for the
parlcular time frame of the story and cannot be generalized to a broader
context. There are two determining features of a Restate situation. First,
the two things must be linked by a relational statement (e.g.,one of them is
twice as great as, three moe than, or one half of the size of the
other).Second, the relationship must be true for both the original verbal
descriptions of the two things and the numerical values associated with
them. Thus, if Mary is now twice as old as Alice, then 20 years-which is
Mary's age-must be twice as great as 10 ears, which is Alice's age. Note
that this relationship was not true one year ago nor will it necessarily be true
in five years.

The Vary situation is characterized by a fixed relationship between two
things that persists over time. The two things may be two different objects
(e.g., boys and girls) such that one can describe a ratio as "for every boy
who could perform x, there were 2 girls who could do the same .... ", or they
may be one object and a measurable attribute of it (e.g., apples and their
cost) with the problem having the form "if one apple cost $.50 then five
apples .... ". An essential feature of the Vary situation is the unchanging
nature of the relationship. If one of the objects is varied, the amount of the
second changes systematically as a function of the knov n relationship. The
variation may be direct or indirect.

Simple examples of these five situations are given in Table 1. During the
entire course of computer Instruction, each of the situations is introduced,
explained, and transformed to a problem setting. Eventually, several are
linked together to form multi-step problems. In the introductory lesson,
each situation Is described by means of an example and with the general
fatures which define It.

Although they are very simple and readily understandable, the five
situations are not intuitively known by students through previous
instruction. Experiments with groups from several different student
populations indicated that students (and teachers) do not typically recognize
or use situational knowledge in story problems (Marshall, 1991). Those
same experiments show that students of all ages are nevertheless able to
learn them.

The present study was designed to investigate how that learning comes
afnt. Because they were previously unknown to the students, the
/u~a/ons in story problems were, in &ct, five new concepts to be learned.

Thus, the study described here provides a setting for investigating how



Table 1
The Five Situations

CHANGE To print his computer job, Jeffrey needed special paper. He
loaded 300 sheets of paper into the paper bin of the laser
printer and ran his job. When he was done, there were 35
sheets of paper left.

GROUP The Psychology Department has a large faculty- 17 Pro'-ssors,
9 Associate Professors, and 16 Assistant Professors.

COMPARE The best typist in the pool can type 65 words per minute on the
typewriter and 80 words per minute on the word processor.

RESTATE In our office, the new copier produces copies 2.5 times faster
than the old copier. The old copier produced 50 pages every
minute.

VARY An editor of a prestigious journal noticed that, for a particularly
wordy author, there were five reference citations for every page
of text. There were 35 tent pages in the mknuscript.

individuals learn new concepts that have obvious ties to much of their

previous knowledge.

The Nature of Instruction

To model successfully the acquisition of knowledge from instruction, one
must examine the nature of that instruction and the type of information
contained in it. Generally, there are two ways to present new concepts to
students. The instructor can introduce the name of the concept and give a
prototypic example. The example contains specific details and is couched
in a setting that should be well-understood by students. An alternative
approach is for the instructor to provide the name of the concept and give a
general description of Its most Important features. This information is
abstract and contains basic characteristics that should apply to all possible
instances of the concept. In practice, instructors typically do both. They
introduce a new concept by name, give a representative case in which the

' nnnanummn nmumunmnn u tmu9



concept clearly occurs, and then make a broad statement about the concept,
which is intended to help the learner generalize the concept from the given
example to other potential instances.

Some interesting research has been carried out to determine whether
students learn differentially under different instructional conditions. Usual
studies of instructional content tend to contrast one form of information
with another, such that each student sees only one type. An example of this
type of research is found in Swellers (1988) comparison of problem-solving
performance following rule-based or example-based instruction.

The issue I address is different: Given access to typical instruction in
which both specific information (i.e., examples) and abstract information
(i.e. definitions) are available, which will a student remember? Do
students commit equal amounts of specific and abstract knowledge to
memory? Is one type necessarily encoded first, to be followed by the other?
Are there large individual differences? If so, are these differences related to
performance? The following experiment provides some initial answers to
these questions.

THE EXPERIMENT

Subjects

Subjects were 27 college students with relatively weak problem-solving
skills. They were recruited from introductory psychology classes. On a
pretest of ten multi-step arithmetic word problems, they averaged six correct
answers.

Procedure

Each student worked independently on a Xerox 1186 Artificial
Intelligence Workstation. All instruction and exercises were displayed on
the monitor, and the student responded using a three-button optical mouse.
Each student participated in five sessions, with each session comprised of
computer instruction, computer exercises, and a brief interview. Students
spent approximately 45-50 minutes working with the computer in each
session and talked with the experimenter fbr about 5-10 minutes in the
Interviews. As stated previously, only the first session-the Introduction to
the five situations-is of interest here.

10



Data Collection

Data were collected from two sources: student answers to the first
exercise presented by the computer and student responses to the interview
questions. Each is described below.

Identification task. The first source of data was the computer exercise
that followed the initial instructional session. The items in this task
resembled those of Table 1. They were selected randomly for each student
from a pool of 100 items, composed of 20 of each type. During the
exercise, one item at a time was displayed, and the student responded to it
by selecting the name of one situation from a menu containing all five
names: Change, Group, Compare, Restate, Vary. The student received
immediate feedback about the accuracy of the answer, and if the student
responded incorrectly, the correct situation was identified.

The order of item presentation was uniquely determined for each student.
Items of each situation type remained eligible for presentation until one of
two criteria was obtained: Either the student had given correct responses
for 2 instances or the student had responded incorrectly to 4 of them. Thus,
a student responded to at least 2 items of each type and to no more than 4 of
them. The minimum number of items displayed in the exercise for any
student was 10, which occurred only if the student answered each of them
correctly. The maximum number that could be presented was 20 items,
which could happen only if a student erred in identifying the first two items
of all five types. The number of items presented ranged from 10 to 18.

Interview Responses. The second source of data was information given
by the students in the interviews. The interview followed immediately after
the identification task described above. During the interview, each student
was asked to describe the situations as fully as he or she could. The student
was asked first to recall the names of the situations and then to describe
each one that he or she had named. After each of the student's comments,
the experimenter prompted the student to provide additional details if
possible. All interviews were audiotaped and transcribed.

It is the interview data that reveal which pieces of instruction were
encoded and subsequently retrieved by each student. Certainly, not all of
the new knowledge acquired by an Individual will be revealed in an
Interview. It is expected that students have more knowledge than they can
access (as pointed out by Nisbett & Wilson, 1977). Nevertheless, the
interview data we Indicative of how the individual has organized his or her
knowledge of the newly acquired concepts, and they suggest which pieces

11 *



of knowledge are most salient for the individual. Following well-imown
studies such as Collins and Loftus (1975) or Reder and Anderson (1980),
we may assume that individuals will tend to retrieve the most closely
associated features and those with highest salience for the individual.

Knowledge Networks and Cognitive Maps

Data from the student interviews were used to construct knowledge
networks, one for each student. Each network consists of a set of nodes,
representing the distinct pieces of information given by the student, and
Lnks connecting the nodes, representing associations between the pieces of
information.

The interviews were coded in the following way. First, irrelevant
comments were eliminated. These were things such as "Um, let me think"
or "I'm trying to remember .... . Next, distinct components or elements of
description were identified. These were usually phrases but could also be
single words. These became the nodes of the knowledge networks. Two
nodes were connected in a network if the student linked their associated
pieces of information in his or her interview response. Two research
assistants and the author coded each interview with complete agreement.

In addition to the knowledge network for each student, an "ideal"
network was constructed from the instructional text. As with the students'
networks, nodes were created to represent each distinct piece of
information. Two separate pieces of Information appearing contiguously in
the text were represented by two nodes with a link between them. Needless
to say, this network was substantially larger than any student network. It
represents all that a student could possibly encode from the instruction, and
thus it serves as a template against which to measure the amount and type of
information encoded by each student. The "ideal" network for all of the
situational information is presented in Figure 1.

Two things should be noted about the network presented in Figure 1.
First, distances between nodes and spatial orientation of the nodes have no
meaning. Only the presence or absence of nodes and links is of importance.
Second, in this figure, all nodes appear equally important, and the same is
true for the links. Strength and activation are not shown. However, in
theory each node has a measure of strength that Is a function of how many
times it appears In the Instruction, and each link has a similar measure of
activation, depending upon how frequently the two nodes are linked.

12



FIgure 1: THE 'IDEAL' NETWORK

Change 
Vary

Group

Compa

Key: Abstraot knowledge Q Speollo Knowledge

Figure I represents the ideal case in which all information is included in
the network Normally students do not retain all of the details, and the
networks one constructs for them appear incomplete when compared with
the ideal situation. Thus, we expect the student networks to be
considerably sparser than that shown in Figure 1.

Several types of information may be gleaned from a student's knowledge
network. First, of course, the network is an indication of how much the
student remembered. The number of nodes in a network provides an
estimate of this information. Second, the network shows which pieces of
Information are related for an individual. A measure of association can be
made by counting the number of links and using that number to estimate the
degree of connectivity of the entire network. Node count and degree of
connectivity are standard network memires. I have discussed elsewhere
how they may be used to estimae a stadents knowledge of a subject m
(Mardn, 1990).
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In this chapter I examine two additional types of information: (a)
specftlty, which is the students' tendency to recall specific or abstract
features to describe the situations and (b) confisions, which show the extent
to which students confused different aspects of the five situations. One
examines nodes to estimate the former and links to estimate the latter.

Specificity. Each node in the "Ideal" network reflects one of two types
of detail: specific or abstract. Specific knowledge refers to elements of
information having to do with the examples presented in instruction, and it
reflects the particular details of the example. Abstract knowledge refers to
the general features or definition of the situation. The instruction contains
approximately an equal amount of both types, as can be seen in Figure 1.
The abstract nodes are represented by filled circles, and the specific ones are
indicated by hollow circles. 4

Each distinct piece of information (i.e., each node) recalled by a student
was categorized as being specific or abstract. A response was considered to
be specflc knowledge if it pertained to a specific example. Typically,
students giving this sort of response referred to details from the initial
example used in the computer instruction. An illustration is given in the
specific response of Table 2. The italicized phrases are examples of specific
detail. In contrast, a response was considered to be abstract knowledge if it
reflected a general definition or characterization. Table 2 also contains an
illustration of an abstract response, and the italicized phrases indicate the
abstract detail. The final example of a student response in Table 2
illustrates the case in which neither abstract nor specific detail is recalled.

Three measures of specificity were developed. the number of specific
responses, the number of abstract responses, and the ratio of abstract to
specific responses. These measures were used in the statistical analyses
described below.

Confusions. In the networks representing situational knowledge, two
types of links are possible, intra-situational and inter-situational links.
Intra-situational links ae judged always to be valuable. That is, If two
nodes are both associated with one situation and they are connected to each
other, then the retrieval of one of the nodes ought to facilitate the retrieval

4 It sbld be noted that the nstrioM was at developed under the constraint
that equ abstract and specific details be contained in it. Te uiding principle
was to explain each situation as compely a posile, using specific and/or
abstract elements as needed.
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Tale 2
Examuples of Student Respoome

ABSTRACT Q What do you remember about Group?
A: Group is when you have different items, different

goups of ftems, that can be camgwid &W ooe

SPECIFIC: Q7 What about Group?
A: That was when you bought 7 shins and 4 pairs of

shor and they grouped it into clothing. So you had 11
separate things of clothing.

NONE: Q. Tell me about Change.
A: I pressed that review button so many times and I can't

remember anything right now. Urn, change was, um
my mind is blank right now. I did okay on the
computer. I'e forgotten just about everything. rm
trying to think of an example. I know they change
something and make something else.

of the other. This is the principle of spreading activation. In general, the
more knowledge the individual has about a concept and the greater the
number of associations connecting that knowledge, the better the individual
understands it Figure 2 shows how the "ideal" network of Figure I can be
represented as a two-layer map. The nodes at the upper level are the five
situations, and those at the lower level are the knowledge nodes developed
during instruction. Connections among the nodes at the lower layer
represent intra-situational links. Generally, a larger number of connections
at this level indicates greater undestanding on the part of the individual. It
is these connections that are shown as well in the network of Figure 1.

In contrast, inter-situational links, i.e., links between different situations,
may or may not be of value to the individual's learning, because they are a
potential source of confiusion. Suci links will not always reflect

fusions; situations could In principle sdwe one or more featurs. In te
present cae, however, the Instruction was carefully designed to eliminate
ommon features among situations. s us reflected in Figure 2 by the

conecton from each node at the lower level to a single node at the upper
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Figure 2: THE 'IDEAL' MAP

Change Group Compare Rca tate Vary

level. Given the design of Instruction, there should be no inter-situational
links. That is, no node at the lower level should connect to more tan a
Single Upper level node. Such linkages would be confusion links and
reflect a misudrtadn about the two situations so linked.

An example of differences in students' Inter-situational and inta-
situational links is given in Figure 3. Two student maps are presented in
this figure. Both students encoded a relatively large amount of information
from the instuction. compared with other students in the experiment, but it
is clear from the figure that they recalled different elements of information.
Studen S7 remembered distinct: pieces of information about each situation
and showed no confusions S22, on the other hand, expressed a number of
confusions, which we represented in Fqgure 3 by the dadhed links between
the two layers of nodes. These cogitive maps are characteristics of
incomplete mftery. lic situational knowledge of every student can be
descrbed by such a m*p Obviously, t deficits of a student are highly
indvichW. These indvichial differences will be discussed further in a later
sewumo Of thi chapter.

In Wmamy, the studet network and its corresponding map prvide
laftimatlon about do nmae of details the student: remembered about a
situalon, the mur at coinnectivity, the type of knowledge (I.e., abstract
or SPecifc), and t nube of camftasiom In the sbuleofs respome ibe
atworks and UOw ames dwm2 be bm we the ues for t suatstical
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Figure 3: TWO STUDENT MAPS

Chaso. gross cpae 0slea te very

0 -0

analyses presented below and also served as input to the simulation model.

which is described in the section followin the statistical analyses.

STATISTICAL ANALYSIS

Three questions we addressed by the statistical evaluation. The fit is
whether students remember different amounts of detail from instruction, the
second Is whether one can characterize the type of infornation encode by a
studnt and the third Is whether these: diffrnces ae related to the students'
saccess on the Identification task Evaluation of the stud=n networks
shows that some students were more likely to encode mostly specific
details, some were more liltely to encode mostly abstraCt nftrmaigon, s80=
encoded both in about equal proportlom. and some encoded almost nothing.
Timsutatistical umlyss evalute whether these tendencies at relied to
perfiommnce on U ie hulcgtoo tak and whethe the relatloudip can be
generalized to due entire group of studNts

17
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It is evident fnom the interview data that students varied greatly in the
amount of information they were able to recall about the five situations.
The number of different details retrieved by students extended from a low of
3 to a high of 20. The mean number of details was 13.5, with a standan
deviation of 4.02.

The number of abstract and specific details recalled also varied, and the
ratio of abstract to specific detail ranged from 14:3 to 6:14. Thus, the
answers to both the first and the second questions are affirmative: There
were clear differences in the total amount of information recalled as well as
differences in the amount of abstract and specific information.

Two analyses provide insight into the Importance of this difference.
First, on the basis of their interview responses, students could be divided
into three groups: Abstract, Spec#fl and Both. Students classified as
Abstract gave predominantly definitional responses in the interview. Those
classified as Specific used mostly example information from the computer
instruction to describe the situations. Those classified as Both responded
with approximately equal numbers of abstract and specific detail. For
membership in either the Abstract or Specic group, students had to have
given at least 9 diferent pieces of Information during the interview with at
least twice as many instances of one type of information as the other.
Approximately equal numbers of students could be classified as Abstract or
Specfic, with 6 in the former and 7 in the latter. An additional 11 students
were categorized as Both. These students gave at least 9 responses with
approximately equal numbers of abstract and specific details.

Figure 4 shows the relative performance on the Identification task of the
three groups described above. A one-way analysis of variance, with a
dependent measure of correct responses to the identification task,5 indicates
that the groups differed significantly in their ability to recognize the
situations, F(2, 21) = 4.53, p < .025.6 As can be seen In Figure 4,

5 It will be recalled that students viewed dering numbers of items on this
exercop. For purposes of comparison in this inalywsw only the first two

nplars of eac tp of sitaon wr scored. Thus, eacb student received a
score from 0-10.
6 Complete data were not recorded for two students. Oe Ion was the result of
computer fadire and the second was the result of a malfunedia in th recrdi
of the Interview. These two studem s wone eided from the ales r
he. Two other students hob amly 6 and 3 interview e s p v
wer also excluded frm this aas
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Figure 4: GROUP PERFORMANCE
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Example Both Abstract

GROUP

students who responded primarily with abstract characterizations of the five
concepts were most successful, followed by those who used both types of
Information. The group relying on examples only were less successful than
those using abstract only or abstract knowledge in conjunction with specific
details. The performance of the abstract group was significantly higher
than the performance of the example group, t (21)= 3.005, p < .01.

The above analysis shows that differences in student performance can be
explained in terms of whether a student remembered abstract or specific
information. One also expects that the absolute number of details that a
student remembers-regardless of whether they are definition or example-
would be a good predictor of performance. Surprisingly, this is not the
case. The Pearson product moment corelation between the number of
conect responses on the performance test and the total number of nodes
encoded from the student's Interview is .074, accounting for less than 1% of
the variance.

A second and more informative way of analyzing the data is a multiple
regression analysis based on the type and amount of information, the inter-
situationl confusions, and the ineaction between the two. In this analysis,
the predictors me (I) X1 , the ratio of abtract to specific detail, (2) X2 , the
mmber ot coausis mentioned expUy by the studet and (3) X3 , a
pndmct vibe of the a two pwedicso. The dependent measure, a&in
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is the 10-item identification task. The resulting prediction equation was:

I" = 6.667 + .602X1 + .545X2 - .617X3 , with all coefficients reaching the

conventional .05 level of significance. The model accounted for 43% of the
variance and was statistically significant, R2 = 0.43; F(3, 21) = 5.38, p <
.01.

In general, students with higher abstract to specific ratios performed
better on the identification task and made fewer confusion errors. Students
with low ratios (i.e., those with more specific answers) named relatively few
confusions but also responded with fewer correct answers. Students with
approximately the same number of specific and abstract responses had the
greatest number of stated confusions.

Thus, the statistical analyses suggest several group characteristics with
respect to learning new concepts. That is, there are tendencies of response
that apply over many individuals, not just a single one. These analyses are
based on summaries of the cognitive maps and aggregate responses to the
identification task A more detailed investigation of individuals' responses
provide additional information about the nature of learning in this study.

THE COGNITIVE MODEL

A more exacting analysis of the relationship between each student's
cognitive map and his or her responses to the identification task was carried
out by simulating the responses using a simple feed-lateral connectionist
model. The model simulates for each student his or her response to each
item of the identification task that the student actually attempted to identify.

The general model is given in Figure 5. It has three types of units:
inputs, student nodes, and outputs. Inputs to the model are coded
representations of the problems, and outputs are the names of the situations.
As in most cofnectiofist models, activation spreads from the input units at
the lowest level to those of the intumediate level(s) through their
connections. At the middle level, ac tion spreads laterally from the
nodes directly activated by the lower level units to other nodes at the same
level with which they ame luked (this is represented by the two middle
layers in Figure 5). Finally, the total activation coming into each unit at
the output level is evalated, and the output unit with the highest activation
is tie model resm Unlike many comactionist models, the units at the

$ ~middle layer, thir comoctiona with other nodes at tUs level, and their
linkages to the upper level are determined explicitly ftmn empirical data.
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Table 3
Item Characteristics Used to Encode Story Situations

General Charcteristics:
Set modification
Permanent alteration
Class inclusion (explicit or implicit)
Relation between two objects
Relation between an object and a property of that object
Fmd relation (implied)
Relative size
Size differential
Percentage
Causality
Multiple agents
Multiple objects
Unit measurement
Two identical relations

Key Prmes:
Each/every/per
As many as
Have left
Altogether/A total of
More/less
Cost
Same
if_.Then
Money

Thne Fekure.
Specific time elements (minutes, days, weeks)
Before/after

Te bottom layer ef ualt The uts consist of Information about the
items that comprise the lde icaion task. There ae 27 possible
dmaIerstca dist can be p-Pt in may item. The set of characteristics Is
given in Table 3. Each Item Is coded amrding to these duracterics as a
27-dement vector contahing 0's and 1%, with I Indicting the presne of a
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characteristic and 0 its absence. Not all characteristics will be present in
any single item; usually a simple situation requires only a few of them. The
mean number of characteristics for the 100 items used in the identification
task was 4.33. All 100 items were encoded by three raters with complete
agreement.

The middle layers of units. For each student, the middle layers of the
model contains a set of nodes and the connections between them. The two
layers have identical sets. The nodes and links were identified from the
student interviews, as described previously, and they formed the basis of the
statistical analyses of the preceding section. Three trained individuals read
the transcript of each individual's interview and determined which nodes
were present and whether they were linked. As in the characteristics coding
above, the three coders were in complete agreement.

The top layer of units. The outputs for the model are the five situation
names: Change, Group, Compare, Restate, and Vary. Only one output is
produced for a given input vector. The five possible outputs compete, and
the one with the highest accumulated activation wins.

Connections between the bottom and middle layers. Each input
element may connect directly to one or more of the nodes contained in the
student's network (represented by the middle layers of nodes). Two layers
are needed in this model to illustrate the feed-lateral aspect. The lower of
the node layers connects to the input units. The second layer illustrates how
the nodes connect with each other. Each node from the lower node set
connects to itself and to any other nodes to which it is linked, as determined
from Figure 2. Thus, activation spreads from the input units to the lower
node layer. Each node transfers its own activation to the next layer and also
spreads additional activation to any other nodes to which it is connected.
This particular two-layer representation of a feedlateral network preserves
the usual constraint that activation spreads upward through the model.

Some of the input elements (i.e., those units represented at the very
bottom of Figure 5) may activate many nodes in the network, some may
activate only a few, and some may fail to make a connection (if the student
lacks critical nodes). The allowable linkages between the input and middle
layers of units were determined by mapping the input characteristics to the
"ideal" map of the entire instruction. Recall that the input characteristics are
general features. Most of them activate multiple nodes, and these nodes are
frequentl) associated with different situations. Thus, it is rare that one input

Shrceristic points to a single situation. The full pattern of possible
activation is shown in Figure 5. Note that this figure illustrates all
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characteristics as they link to all nodes and is thus a theoretical pattern. The
model would never be presented with a problem containing all possible
features, nor did any student have all possible nodes at the middle layers.

Once the student network receives the input, activation spreads from the
nodes directly targeted by the input elements through any links they have to
other nodes at this level. All of the activated nodes then transmit their total
activation to the units at the upper level. The amount of activation for each
situation is determined from the accumulation of activated links leading to
it. Th five situations compete with each other for the highest level of
activation, and the one with the highest value becomes the output Thus,
the model of Figure 5 represents the Input of an item, the activation of the
student's semantic network, the competition among situations, and the final
output as a result of total activation throughout the model.

The model depends upon the set of nodes for each student, the pattern of
linkages among them, the overall association of subsets of nodes with the
situation labels, and the input characteristics of the items. All except the
latter are derived from the student cognitive maps described earlier.

Model Verification

As a test of the model's adequacy, a simulation was carried out in which
the ideal network of Figure 2 was used as the student model. The 100 items
available in the identification task were presented to the model, and its
responses were compared with the correct answers. The model performed
with 100% accuracy, successfully identifying the situations for all items.

Simulation Results

A simulation of each studens performance on the identification task was
carled out. For each student, the response to the first item encountered in
the exercise was simulated first, using that item's vector of characteristics
and the student's network informatio. The second item followed, and then
all subsequent Items until the exercise terminated. Thus, the simulation
covered all items presented to the student in the order in which the student
saw them.

As described above, the number of items answered by students varied
from 10 to 18, yielding a total of 360 Item responses. A comparison of the
results of the simulation of these 360 responses with the actual student
responses to them Is given In Table 4.
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Table 4
Simulation Results

Frequency Frequency
Outcome Observed Outcomes Adjusted Outcomes*

CSM 192 192
C SU 64 64

-S M 19 13
CSMW 30 13
CMS 55 51

Total 360 333

Key. (1) CSM Both model and student answered correctly.
(2) C SM Model and student made the same error.
(3) CS M Model and student made ddffren errors
(4) CS M Student answered cectly, model errd
(5) CM S Model answered correctly: student erred.

(C = correct response-, S - student response; U - model response)

'Impossible matches excluded

Table 4 presents the observed classification of t students responses as
well as an adjusted classification against which the model was compared.
All 360 items comprise t observed classification. In the adjusted
classification, some items have been omitted flun consideration because the
model was constrained by a lack of Information from the student interview.
This occurred une the following condition: If a student was unable to
rememiber t name of a situation or anythin that described it in t
interview, t model for that student would have no nodes at te middle
layer that could link to the situation name. Thu, t model would be
constrained to ignore that situation and would never generat a response
pointing to it Consequently, if a student omitted entirely a sitution In t
Interview, all Items for which the student gave that situation as a resons
were ikewise elinated. Thene were 27 of thee impossible matches. As
shown in Table 4, 17 of thew. were item uwh the studenit answered
correctly, sod 10 were item on which t suden aed. It should be noted
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that these are not model failures but we interview failures.
Each application of the model to a vector of item characteristics,

19Penting a single item, resulted in one of five outcomes, as shown in
Figure 5. Outcomes CSM and C.SM ae exact, successful simulations of
the model. In both cases, the model generated a response that was identical
to the one produced by the studem. In the first, the response was correct,
and in the second, It was an e=o. The outcome CS.. Is considered to be
a partial success of the model. Both the student response and the model
response were in error, but they were different erors. In these cases, the
model accurately predicted that the student lacked critical knowledge and
would err.

The remaining two outcomes, CS.M and CMS, represent simulation
failures. The most serious of these is CS_M, reflecting cases in which the
student answered correctly but the model failed to do so. They are serious
failures because they suggest that the model did not capture sufficiently the
student's knowledge about the situations. It should be noted that more than
half of the observed instances of CSM were impossible matches, as
described previously. That is, the student omitted any discussion of the
situation in the interview, and the model was subsequently constrained to
ignore it. As mentioned above, these instances am considered to be
interview failures rather than model failures. Only the remaining 13
instances me tue model failures, representing just 3.9% of all responses.

The final outcome category, CM.., also represents model failure but is
less critical than the failures of CSM. In this category, the model made a
correct response when the student did not.

Many of the CALS simulation failures can be explained by considering
the students' experience as they respond to the Identification task. During
the actual task, many students made erors on one or more situations and
then appinently learned to classify these same situations correctly. This is
evidenced by their patterns of responses, typically an incorrect response to a
situation followed by two cor rc responses to the same situation, with no
additional erors. What has happened In such caes Is that the studenrs
knowledge network presuma y changed dxing the course of the task The
bkn ee base tht Seerted the early Incorrect responses Is not
necesily the same one tt generated the latw successf ones. And It is
only the latter that is reflected In the studet's Interview. In such Instces,
the model would correctly match the two correct responses, but it would
ds ive the corrt reqe to t first item that the student missed. ITe
model does not le'.. It siae t state of t e sthident at th end of the
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exercise, as reflected in the interview. If the student learned during the
course of the exercise, we have no way of knowing what node configuration
coreponded to the earlier, incorrect responses. Under the most
conservative criterion of learning-an error followed by two correct
responses-25% of the mismatches can be accounted for by student learning.
In each case the model gave the correct response to all three items. 7

Another 25% of the mismatches occurred when both the model and the
student selected different wrong situations as the response option. In these
cases, the model correctly determined that the student would not give the
corect response. The model's answers may differ from the student's for a
number of reasons, Including guessing. These were, after all, multiple
choice exercises, in which students were asked to select the correct situation
from the menu of five possible ones. Students probably guessed at some of
the answers, but the model does not guess.
There are other possible explanations for the model failures. On the one

hand, some students may have been prone to "slip" as they made their
selections using the mouse, resulting in the unintentional selection of the
option residing either above or below the desired one. It is not an
uncommon phenomenon, as those who use a mouse frequently can attest.
Accidental errors of this sort are undetectable. Similarly, students may have
used a test-taking sMrategy, such as avoiding the selection of one response if
they used it on the immediately preceding exercise. These wrors are also
undetectable: The model does not take test-taking strategies into account.

If we consider the "probable learning" mismatches (i.e., those that were
followed by two crrect matches on the same situation) and the "different
eM mismatches (i.e., those in which the model and student both erred but
selected different errors) as understandable or explainable discrepancies,
the total number of mismatches between students and the model is reduced
from 77 to 51, leaving only 13 CS..M and 38 CM.S as mismatches. Thus,
the model satisfactorily accounts for 85% of all student responses.

A final evaluation of the model's performance comes from examining
how well individual student peformance was simulated by the model. The

7 Several other instances exist in which the student made multiple errors on a
sltuatim and the respomded correctly to one final instance of that situation.
Whae it s very plamile that leanin also occurred in thes cases, one hesitates
to draw a condmim based nly on e resposem Thus, these eor remain
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Tabd 5

Shadatim of Idbi Natramme.A Cemptrbm of Meid ilespmm vw& Obsermd Stumt iespommes

Student No. of No. of Percent Percent Total
items wimpol Endc "E*pand Percent

Matche Matches Match Matches

1 13 3 100I% 0 100%
2 15 0 80% 7% 87%
3 13 3 90% 10% 100%
4 13 3 80% 10% 90%
5 16 0 75% 6% 81%
6 11 0 100% 0 100%
7 14 0 86% 7% 93%
8 13 0 92% 0 92%
9 14 5 100% 0 10
10 15 2 85% 7% 92%
11 15 3 67% 8% 73%
12 16 0 63% 31% 94%
13 14 0 71% 0 71%
14 13 0 69% 8% 77%
15 14 3 100% 0- 100%
16 13 3 90% 10% 100%
17 15 0 73% 14% 87%
18 14 0 79% 7% 86%
19 14 0 79% 7% 86%
20 18 0 67% 7% 72%
21 13 0 69% 0 69%
22 16 0 69% 12% 81%
23 16 0 56% 13% 69%
24 16 2 S7% 7% 64%
25 16 0 69% 12% 81%

results for each student simulation m given In Table 5. Two measues of
sCcess a given In tie table. 11.-first is the numfer of exact matches
excluding the "Imposlble one. . he oud is the overall pecentage of
sIftry matdces for each Indivi" ad is given In the extrem rht-
hand column of the tale. TMs paentae is bed a nh mft antr of
SitmaciCm matcbmu Md "pmbd Je =drq" -"Mnas ear"
mismAes d eibd above but dsi gra Ac OoaIdlO @e

mln'-oauble mawbu. As cm be me In 1Tae 5.f0tpOrma 6 of
the 25 sudeM wa fit exactly by the mode with 100% agremu. '1h
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model simulated the perlxmance of an additional 12 students with accuracy
between 80-99%. The model's success rate fell below 70% for only 3
students, to a low of 64%.

DISCUSSION

There are several important implications tha result from this study. They
are discussed below with espect to the three questions posed In the
introduction: What do they learn, when do they learn it, and what can they
retrieve?

What specific Information does a student learn from Initial instruction
about a new topic?

One of the most striking findings was that students tended to encode and
use specific details from the Initial examples used In instruction. Almost all
of the example nodes had to do with the five inroductory examples, despite
the fact that several oter examples were given lat In the instruction. (See,
for example, the Spec response of Table 2.) TIds finding suggests that
the very first example of a concept Is highly important and should,
therefte, be carefully developed. For many students, the initial examples
provided the scaffolding for the semantic networks. Some of the details of
those examples led to erroneous connections. As a case in point, the
example for one of the situations was based on money, leading some
students to expect (incorectly) this situation to be present whenever money
was In the problem. These faulty connections were very evident In their
interview responses.

A general pattern of encoding was appant n the students' responses.
Several students described the situations only in terms of the examples.
When prompted, they were unable to embelsh ter descriptions by using
abstract No Instance of example information followed by
abstract information was observed. In contrast, students having abstract
knowledge always used It in preference to giving example details That is,
their initial responses were eaditions. When prompted for more
Inrmation, they used example details to support their abstract descriptions.
These findings suggest that students may first de thexample
Information and te buid the abstract network rmound it. Once frned, the
abstract portion of th networ becomes stronger upon exposure to
aditona examples, whereas the example portio does not augment Its
activation or ureagft If the abstract information is m encoded, te details
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of t example-which received high strengt initialy-remain t most
salient elements Of t network.

Bow IS the information that the student encoded In memry related to
the studenrs performance?

lt Statistical analyses Suggest that t degree to which a student Is able
to use his or her abstrac InflarmatIon Is positively related to te students
Succss on t identification task lToe able to express mainly abstract
knwledgte apparently had Me best understanding of t five concepts and
were most easily able to Identify them. Those for whom te abstract
" ,aterizations were somewhat incomplete (eg., those who were able to
give abstract description for some concepts but needed eample details to
describe others) performed less well but still were more uccessM tn
those who predominantly relied on example detailst.

lte primary Implicatio of t finding is that Instruction should be
developed to blifte te linkage of abstract knowledge to easily
understood example knowledge. The examples we[ undoubtedly salient
and eaily encoded. For some stUdents, ft abstract characterizations were
eqully easy to encode, but this was not universally tru.

Does the cognitive mod rfde this relatonship?
lTe connectionist model is a usefu way to examine inividual

performance of students as ty identified these concepts. The simulation
of Individual perfornmnce was extremely sucoessfu. 7be high level of
agreement between model performance and student perfoananc suggests
that t model captune most of te salien and discriminating hinrmtion
actually used by die sftd Most important, t model demonstrates t
Impact of missing nodft d eroneously linkd pairs of nodes. in many

cases kwede of which noe were missing led to accurate predictions

provides strong nsIp nItv or use ofcognitive networks to represent
learning of concepts.
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An ongoing controversy in the cognitive science community centr on the
nature of the models used to represent cognitive phenomena. The two primary
c er s are prodwu-system models (such a ACT and SOAR) and
r clst models (such a Mose produce by McOlefla and Rumelbart or
Gromubeg and his associates). Critics of bot sides agu that the oter cannot
suffIcelocapturelumutbehavior. Boftq ertobeuigt. Pe what is needed
Is a model that combines the best-and lessens the worst-feures of both kinds of
model. A hybrid model having these is the topic of this repott

The recnidtio that hybrid models me needed Is m0 new. A number of
prominent researchers (Wio both sides of te argument) have suggested that somne
union of ft two repesentations is in order. For example, in The ConVater and the
MMnd Philip Johuon-alrd hypohsized that one way to jvt arond somne of the
dileamm poe by eWitin models at cogntion, was to "postulate different levels
of represenmtaio: high-leveli excit symbols and low-kv distributed symbolic
pitm* (p. 192). The opinion of a long-time connectiodst is reflected in the title
of a recent article: "lybid Coupation, in Cognitive Science: Neural Networks

ad Symbl (3. A Andesson, 1990). And, Marvin Mtuky edxes the sentiment
in is 1991 paper, Logical Versus Auaogical or Symbolic Versus Connectionist or
Nest Versu Scruffy.- where he "ta eMplcity that we "need integrated systems
ta can exploit the advantages o bot (p. 37).

lMe need to combine the two rePNestions derives from the fact that
neither aone has been entirely satisfacscy in modeling comiplex cognitior.
Symtli prodo systems, as t oldest and mot wely used of the two, have

benvery succsf in describin em iuponaft apects of rule-basedi problem
solving. They aw be idely ,d In a tldd Imigem and have greatly
laime 1a the tievA opm a of intlz aaeflle. l aben syems (VWe, 19n7.

As ther sa me at sysa #a saaad kr teir Inflexility on some
Miw s- mpe kk aub as object tecogion ad clam catL Berlter
(1991) provides a good dWcussion of some of te central problems with rule-bed
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cognitive models. As he (and others) point out, humans are not particularly good at
woddg out extended logical sequences. They make mistakes. A production
sytmdoes not mak mitw and one diMculty in working witheproduction
models is to produce human-like errors from the model. Many models consistently

have better performance tha the humans they are iended to mimic.
A second difficulty lies In the way that production systems work, namely

systematically, orderly, and effciently. People dont seem to have those
c arcs. We see this diffbity when we try to model complex proem
solving, using protocols generated by experts or by novices. Very few individuals
start at the beginning of a problem and proceed caflly through a top-down
process to reach the solution. To model their performance, we all too oftn are
forced to disregard some of the protocol material In our quest for sequential rule-
based performance. Moreover, many Individuals simply cannot articulate what they
are doing or explain why one part of a problem triggers a particular response from
them, which suggests thu their activity is not entiry a neat and orderly process.

Nonetheless, there me dearly many instances in which individuals do
engage in rule-hed cognition, and prodtution systems have to date provided our
best men of modeling them This is paticularly apparent in well-specified
domain from mahmocs such as arithmetic, algebra, or probability, and in a
of physics such as etricity and maguetics. What Is common in these domains is
tha there we highly specific rules tw need to be acquired and applied by
inllvials in order to operase wcosseay the domain. As a simple example,
consider aritmetic operaiow It would be the re person who perftmed
muldlaion or long division witdoM resorting to the use of a standard algorithm.
Modeling the acquisition md we of m:di algorithms are precisely the areas In which

-modl cud.
On the other hand connectlondst models ae weak In just these areas.

Connectionist modes excel In -e recognition rthe than in logical sequences of
actiom. Usilk pieauh on sysms coutectionist models do not depend upon the
firn o( indepeadent wts sm h is rdes. Ralh, a collection of units (nodes)
sp-ad activation tfugh their omectm to other units. One does not trace the
history of a copitive pxmu wy emly in a coeneedon t model because of this
I Subte difeeas in the comction weights may yied large differences in

model response. At say p is Me Vx It Is the pr of weihthat
nmien, sot the isec at dome or a paMrt Unit

A partimi. swuqd of womalouls mdels is the flexibility allowed for
p. Decmne modelspnd on0e of wets over a ga many units, the

p or ala of my da * ft nu y vWiayodei Any input qykcUy Is
fa~ud by a Out mny wits.
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Given the unique and coulmnaynature of the two approaches-the
strength of the symbolic system for modeling sequences of actions and the strength
of the couriectionist approach fmr modeling pattern recognition-it is reasonable to
anticipate hybrid models that will capitalize on their individual strengths.
Surprisingly, few true hybrid models have yet emerged, although one suspects that
the number uile development IS somewhat greater. One of the best examples
availabe now was developed by Walter Schneider to model controlled or automated

oess(Scider a Oliver, in press).
The remainder of this report describes a particular hybrid mode, a model of

schem Instantiation In arithmetic problem solving. This mode utilizes both
production systems and connectionist networks to represent schema knowledge.

overview

Type of Schema Knowledge

Schema knowledge for problem solving consists of four major components:
constraint knowledge, feature knowledge, planning knowledge. and execution
knowledge (Marshall 1990; in press a, b, c). There are key issues involved in each
type of knowledge, and each one demands its own distinct representation in the full
mode of a schema.

Constrain knowledge has to do with recognizing patterns. The question of
interest is: Does the stimulus problem contain a patten of elements sufficient to
activate an existing schema? Ibis ptenrecognition is accomplished by a

coectlonist component Of the mode.
Feature knowledge, on the other band, has to do with deciding whether the

1ecessay elements wre provided in the problem. gime tha t patter hos areay
been recognized ats cwceldc, of a xchema, so that the schema can be

lastglaed.This Is a question best answered by a production system. There is also
a connectioniSt part to this knowledge. Several potential patterns within one schema
may exist in a proble, ad di maost feisnable or most likely one for solution
needs to he recognised Mti is a special case lbr competitive performance by all
pattern candiaes to defmlne 'puk pater most strongly reflects the identified
schema,

Planning knowledge is Ibr the mast part sequential and consists of setting
gods ad aeletia ope tan b oftft them. Again, a proxtion system is
is 11,da Planning knowkd dge b erntire problem-soltving proncess, and It

calls on feature knowledg and r 1 1 -n knowledge when it nuemore detail or
more elaboratln Amo t probleu
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Finally, execution knowledge involves the step-by-step execution of
already-learned algorithms, which again calls for a production system. Execution
knowledge comes into play only when the plans call for it

These types of schema knowledge have been the focus of a number of
experimental studies as well as the target of our modeling efforts. Each experiment
typically spanned several weeks and required subjects to participate in a number of
different tasks at various times. All of the expaiments involved the Story Probem
Solver (SPS), a computer-based instructional program about arithmetic story
problems, and/or the Probm Solving Envirment (PSE), a graphical system in
which students could practice what they learned under SPS. These systems are
described elsewhere (Marshall, Barthuli, Brewer, & Rose, 1989; Marshall, 1991).

Both SPS and PSE were designed around schema theory. In particular, they
were developed so that each of the four components of knowi- ,e described above
could be Isolated and evaluated as students acquired their skma,4 knowledge. The
results of the experiments using these systems are given in several other papers
(Marshall, 1991; Marshall In press a, c). The impoutance of the experiments for the
present report is that they provide empirical evidence against which our computer
models can be evaluated.

The Performance Model of Constraint Knowledge

-We focused our attention initially on models of constaint knowledge. We
did so for two reasons: First, problem solving typically involves two general
aspects: recognition of the important parts of the problem and appropriate
application of techniques to these componen to obtain a solution. 'Die recognition
aspect demands constraint knowledge, suggesting tha constraint knowledge is an
Important Initial point of access to schema knowledge. Second, we were interested
in how individuals understand ad retain new information about a concept or set of
concept• Ths too, fau constraint knowledge.

Constrain knowledge can be modeed very well using relatively common
connecdonst models. Two models were ceated: a model that can mimic the
performance of subjects and a model which Ie= when given appmpriate feedbac±
Both of these were deveoped and evaluated as a first step in building the complete
hybrid model.

The model dot simuates subject perfrma In lidentifing the siUmtions
given in simple Story problems is described in ftl In Ma al press)1 . It is a

W Thke re re md in d ciao is repdodud ine caper w mtd&.
preced- .pre meamt=- "rep • "=iaPresentedtmn
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three-layer feed-frward (and feed-lateral) model consisting of input units, a middle
layer of intronnected units, and a set of output units. 2 he model takes as its
Input a bimry vector having elements of 0 or 1, which represent 25 problem
characteristics. The model produces its output the identification of one of five
situations that may occ in the story problem.

The input units are connected to a middle layer of units representing a
subject's knowledge about the situations. This layer of knowledge nodes
corresponds to the typical hidden unit layer found in many connection models, but it
Is not hidden in this instance. The nodes here derive from student interviews. Each
student's interview about the situations was coded and transformed into a set of
nodes and links among nodes. The model used this information to derive its output
response. Again, full details of the simulation are given in Marshall (in press).

The performance simulated by the model is student response to a computer-
based identificaion task. The model performed very well, simulating the
performance of a number of students exactly and accounting for a large majority of
responses for the rest Both correct responses and specific eros were modeled.

The LeaMhg Model3

The performance model provided the initial framework for the subsequent
learning model. The input units for this model are essentially the same as for the
Performance model, as are the output units. A layer of hidden units replaces the
knowledge nodes that derived from the student interviews in the performance
model. Thus, these hidden units are hypothesized to exist but we unknown.
Moreover, the nature of their connections to the inputs and outputs ae unknown.
The question of interest in this model is whether a comnectionist model of this form
can learn to maie the appropriate clanification of the five situations.

The optimum number of hidden units for this case is undetermined.
Tbeortica1ly, it depends upon the Optimum number of knowledge nodes that a
student should acquir and this number is not known. From the instructional

2 The model can also be conceived as a four-layer feed-forward model in which the
second and third layers contain the same uni. This eliminates the problem of hav

aci rto -ra laterally among emits a y level To achieve ,I deendnceat al
lee~we neot a t~d layer of uitks tha dupficotes the naits at the secowd laye.

Comectioes ezist froms all original =its at the second Jayer to thur counterpart at the
third lae nd also to ay oteur u to whic they may be cooa y r
3 1n developi g this modl, we hve da sdeatiy from the mode& describd in
Chapter 8of iumehrt a MOCO&Wb RUMme~h islon, & WiiMs as well
as te tecih t tbe i o p. l u & Rofat (1eg).
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experiment reported in Marshall (in press), the maximum number would be 33, the
number of possible kiowledge nodes. However, no student ever acquired all
possible nodes, and It is not "1ear that having all of them would produce maximum
performance. Several students made more than 90 percent successful responses
with many fewer nodes. In SPS-based experiments, we observed that students
typically acquired an average of 14 nodes. The range was 6 to 17. In general,
having more nodes did not necessarily mean that students performed more
successfully on the task.

Using the instructional experiment as a guideline, we include 14 hidden
units in the learning model. As an initial simslIcation, the model is constrained
to have 3 layers, eliminating the feed-lateral feature of the performance model. The
three layers are the Input layer, containing information about the problem to be
classified; the hidden layer, containing units that cxirspoed roughly to the
knowledge nodes of the performance model; and the output layer, containing the
names of the five possible situations.

The model requires specification of a learning rate, 17. This rate defines
how strongly the model reacts to incorrect answers with each trial. The learning rate
must be chosen carefully so that the system will converge to the correct solution in a
reasonable amount of time. A learning rate which is too large may cause the system
to converge to an incorrect solution while a lemming rate which Is too small may
prevent convergence In a practical amnt of time (and perhaps at all). In general,
for the network to stabilze (i.e., for leming to occur), the larger the number of
hidden units, the lower the learngin rate. We found that learning rates between .05
and.10 were most satisfactory.

For this model we also include a momentum factor, I. Tbis factor allows
the system to carry over lerning from previous problems when new problems are
presented. As Rumeilt and McCieliand (1989) poInt out, without the inclusion of
a momentum factor, the system may converge to a "local" solution and stabilize
ther, even though there is a better "global" solution (p. 132). A suitably large U
prevents the model from getting stuck in such local solutions. In addition, a
momentum term tends to speed up the model, because it allows the specification of
a higher leaming rate.

Testing the model coxespods to nmaing It over enough trials for it to
reach some pe-determined awim Each trial pee tough the sps listed

o presentaion of a radomdy selectd inpt vector,
o ftrard pqImtgW of activadu fromn Input to hidden units

and from hidden ID oWPaO 181s
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o calculation of the erors associated with each output unit;
o backi'rd propagation of errors from output to hidden units;
o modification of the weights of the connections between all

layers of units based on the errors.
Each of the main components of the model are described briefly below.

The Task The task for which this model was developed is to learn the
appropriate classification of a set of 100 story problems according to the situations
depicted in them. Each problem is represented by a set of characteristics which the
model uses in making its classification. Five output responses are possible.

Inputs. The inputs to the model are the set of 100 binary vectors nearly
identical to the ones described for the performance model (see above and Marshall,
in press). Each vector represents one arithmetic story problem. The problem is
coded according to the presence or absence of several general characteristics.

The difference between these input vectors and those of the performance
model is the inclusion here of coded information about the form of the question
stated in the problem. In the performance model and in the empirical studies
simulated by it, the items were situational descriptions and contained no questions.
Both the learning model and the hybrid model described below require problems
rather than situation if we are to model the full problem-solving process.

In general, there are two options for item presentation: either the entire set
is presented again and again in some fixed order, making an orderly cycle through
the entire stimulus list and insuring that each item Is presented an equal number of
times; or each presentation is randomly determined at the time of the trial, so that
every item in the set has an equal chance of being selected on every trial. We have
implemented the latter, primarily because we wished to avoid any possible order
effects and also because items were always randomly generated for students in our
empirical learning experiments.

Outputs. The model outputs correspond to the identifications of situations
given in the story problems. For each problem presented, the model can make one
of five possible responses, one for each situation.

Input Units. In a single trial the layer of input units is comprised of one
input vector. Each element of the input vector takes a value of 1 (if the
characteristic it represents is present In the selected Item) or 0 (if it is absent). The
input vector to the learning model contains the original 25 elements used in the
performance model plus the additional 2 elements to code the question, resulting in
a 27-element vector.

Hidden Units. The middle layer of the model contains hidden units. Each
of these is connected to every input unit In the layer below It and each In turn
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contributes to the activation of all output units above it. As mentioned previously,
there are 14 hidden units.

Output Uts Each situation is represented by one output unit. On each
trial, following activation from the hidden unit layer directly below, each output unit
has some level of activation. The one with the highest level is the model response
for that trial.

Bias. Each hidden and output unit has a bias associated with It The bias is
added to the incident activation upon the units and functions like a threshold for the
unit (d Rumellait). If insufficient activation is received at the unit to overcome the
effect of the bias, then the output of the unit will be insignificant.

Input-to-Hidden Weights. As in most connectionist models, each of the
input units connects to each of the units in the layer immediately above it, i.e., the
hidden unit layer, and each connection has its own unique weight. When an input
vector is presented to the model, activation spreads from the input units to the
hidden unitL The amount of activation spread Is determined in part by the strength
(.e., weight) of the connection.

Hidden-to-Output Weights. Each hidden unit is connected to every output
unit, and each has a strength or weight. The values of these weights are also
randomly generated for the initial trial, using the same constraints as for the input-
to-hidden weights.

Model Parameers and Inltializadlon Values

The model requires that two parameters be set: the learning rate 17 and the
momentum/i. For most of our tests, wehaveused 11 =.07and AL =.9.

Additionally, the model requires that each unit i have a bias term A and
that each connection between a pair of units i andj have a starting weight o," "Te
bias term and the weights ae geneated initially from a uniform distribution
ranging from -.005 to +.005.

Finally, the learning criterion must be set. This requires choosing a
tolerance value that indicates how may-If any-errors will be allowed and
specifying how large the ou value most be in order to be Cmsidered cmect. We
use a 90 percet tolerance standard; that is, the model must correctly idetiWy at least
90 of the 100 test tems. To be cossldered a cnrct response, the appropriate omput
unit must have a value that is at east .25 larger than the ne largest output unit.

Under the parameter selections and Initialization values described her the
model converges at appmtooey 7.000 Ual.
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Technical Details of the Learning Modl 4

Mte model consists of t three-layer network shown in Figure 1, with each,
layer ommped of a set of units. Typically, one think of the input units as being at
the bottom level of the model and the output units at the top, as in Figure 1. The
hidden units make up the middle layer. Each layer Is fuly connected to the layers
immediately above andfor below It as shown In Figure 1.

We defie the following elements of the model:
11 the learning rate;
IL the momentum fawco,
aX, the activation that accumulates in each hidden or

output unit i;
A, the activation that sprads from unit i to units

above-lt,

*1 the weight associated with the connection
between units i andj;

P8, the bias assocated wth uniti;
1, the target level of output activations externally set

as I if the output unit Irepresents the correct
situation or 0 if It does not;

e, the errm associated with unit i.

lTe model lem=n by proessing an Input vector and forward propagating
activation from t lowest level to the highest, by calculating the error at this
highest level and then backward propagating the eror clown through all levels, and
by adjust all weihsW connecting pairs of activated units accordingly.

The activation spreading out fom a unit is defined as:

IlorO0 if iis ainput unit

4 Ag j m forthe MOdeh i "report waswritten inC+ + aWdrunan a PC84WW
hudo
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where P is the bias associated with unit i and a, is the activation that has
accumulated Into the unit from the layer of units below. The accumulated activation
is determined by:

JI
a, 1VA

Jul

If i is a hidden unit, j refers to input units, and the summation occurs over all

weights between a hidden unit and the input units at the level below and the ;Li s of
the input units. If i is an output unit, j refers to hidden units. Each of the units j at
the level below unit i will have an associated Ij which influences unit s. Note that
a, is defined only for hidden and output units.

The spread of activation begins with the input units. Those with values of I
activate their associated hidden units which in turn pass some of the activation to
the output units (by means of their A, 's). When the forward propagation of
activation is completed, for every output unit i the difference between T, and A is

used to compute the ar S:
e, =(?,-,A)

where the derivative can be expressed as

aa,

thus yielding a fnal form for the unis error of

e, =(r, -A,)A,(1-A,)

with all tr as defined above. 'The error signal Is then passed to the hidden units
by:

e J, = 19,ie A : I&JOVl,(l)
/-ut

for u idden unit L mmM occur over @l oW units J. loput units do
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After the eror signal has propagated backwards through the network, the
weights =e adjusted by:

WVt=W t-+WJ)

where t indicates the currnt trial and (t -1) Is the previous trial. Mie amount of

chang Is determined by:

Note that wjj emanating from Input units with initial values of 0 will receive no
adjustment. A similar adjustment is made for the bias terms, with

At=A -1) +4J~(t)

and the amount of change Is computed by

Ap1(tW = neie4 +P(AA (t -10).

After the weights and biases have been adjusted, the activation and error
terms are reset to zero for the next trial. The only carryover from trial to trial Is
contained in the weights, the biases, and their delt values (w, PA, ANu #,n p)

The model runs with alternating learning and testing phases. The learning
phase runs In blocks of 100 trIals. At the conclusion of every block of trials, the
model suspends the backwards prnpagation of ero and runs a performance test
over all input vectors to determine whehe It has yet reacied a spiecified criterion
for succesaflul leaning. During a tut phase, the model maintains an unchanging
set of weights, which Is the set reached on the last tria of e previous leavning

Thecriterionfor learning istheou c 01Pr e sponse to at least90 ofthe 100
Input items, with 'correctness* estalished a the activation of the appropriate
output uoft i wd with Aj at lest2 Z& lue=tu the next largest activation value for
any ouu unit In practice, the system typcaly converges with 94-97 items correc
In the teasng phme Give do a ISO At , t.- omly ftc. 0 to 1, a dlitrence
betwe two values of .25 Is highy sigaikel

Doft ft efs PbU ub ofb di 00 im vet O sP md ina
fixed COWde ID the MOM de a V10qxnU IS gasmPated "ftfow dke quos of
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activation as before. The response is scored as correct or incorrect, and t next
vector is presented. If the model fais to reach the defined criterion (i.e., errs on
more than 10 of the items), the learning phase resumes with another block of trials.
When t model reaches the defined criterion, the weights ate stored for later use, to
be described below.

The Hybrid Model

The hybrid model developed to solve story problems has the form shown in
Figure 2.5 It has three main components: two production systems, represented in
t figure by te decision boxes and arrows, and a connectionist network,

represented in the figure as a set of ndsand links. All of tse interact with each
other, indicated in t figure by t arrows leading into and out of the rectangle in
the middle of t figure. The connectlonist: model of Figure 2 is the identical model
described une t learning model. It performs here in its testing mode; at this
point the model is presumed to have learned the classifications, and no additional
changes in weights occur. fTe weights used to compute a response for t hybrid
model are those that were saved when the learning model reached its learning
criterion.I

The problem input to t flil model now includes more than t vector of
chcteristics used in the perfoumnce and learning models. In addition to this

vector-which remizu the InPut to t comuectionlst purt of the hybrid model-
problem input consists of specific detail aout the quantities found In t problem.
This Initrmation is encoded by dividing the problem into several clauses. Each
clause contains thre types of informudoL owner, objct, adl time.

An example of clase coding for a specific problem Is given In Table 1.
Ower contains two field: name and type. Object contains four fields: name.
type, value and acton. lT action Will cIona much infaMail0 as IS necessary to
determine which orithmnetic operation to ume For ezunpKe an action might be
Iweue, decrease, more, or len. 7be final type of clause information is Tiaae.
which contains Just one fied tha indicates a rehltve tim of occurence within the
poblem. A claus my contain multiple owners and multiple objects, ad iti "y
omit time. The clause information Is provided as Input to the smaller produaction
systm(Indictd by theuzosw In Fig=2).

3Is " 1gwt sd othr m pil hybr mW*k we do no lt to repuumen OR
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When a problem Is presented to the model, the consectionist network makes
di ppropriate recognition of the situation using the Input vector as before, arnd it

pase thai dt Informtion Into a commonam accessed by all parts of the model
(represesacci by the rectangle). From here the information is available to the smaller
prxkactkua system (on the left sde of the figure). Thiis production system has as Its
goal the recognition ot relevant dlements of the problem once the situation is
known. It passes its results backInto the common ato be used by the

cOn ectonist network again If necessary or by the larger production system, which
will produce a numerical sobution

The additional information derived from the clauses is used by the
production system to determine which values of the problem we known which are
unknown, ad their rulationship to each other. Just as the recognition of the

stainuses cowhett knowledge about story problems, the selection of relevant
piece of the problem uses feature knowledge. To Illustrate what we mean by
featmre knowledge, we describe briefly the change situaion. A change situation is

*ducerzd by a permanent alteration over time in a measurale quantity of a
single, specified thing. Thus, the model must confim that only one thing is
represented in the clauses. There are Umee aspects to a change situation: a statling
momnt, an amount by which It is to be changd, ad an ending amount. The model
must check that there me ldme available amovets, even if one of them is unktnown.
A chag takes place over time, so the model looks for three distinct times to be
represented In the change situation, The poction system works through the
caises, confirming that similar eeet are Involved and placing the values from
the problem on a list thm emn be used by the larger production system in the model.

Thus, for the hbrid model Of Flgp= 2, the cowtrhid knowledge is
modeled by the commectionist network, and the Jeat=r knowledge is modeled by a
production system. In the fd hybrid model of scem knowledge, relevant feature
and constraint knowledge me used to pan a solution. This, the input to the
planning component of the hybrid model is M outputDo daite feature production
System Coupled with dou outpu fom the conneciomis model of constraint
knowledge. Together. they pOWld auffiht infomation Ar the planning
production system to set a sePrIes of goals an to call on Mes appropriate execution
knowledge fix acieving thu. iTle I illumives some of the production rules.

Of the Am types ot knowadge OVAt~u a schema. we coder
execolon knowledge to be Mhe hes homesog, and we boo made li1t attemipt to
model how Individuals learn the bodec wuec opematOLom We take a given it~
these are in place Ow ug,1 nt her Is do Mre already exis production Systms

-wlm to model the acqudsdiond m of t dpxkgad a dition subtraction.



multiplication and division. The model here focuses instead on the selection of the
appropriate values from the problem to use in carrying out necessary computations.
This, the errors that can be modeled are those reflecting mistakes in selecting pieces
of the problem or In selecting an operation to be carried out. Errors of computing
sre not possible (i.e., 3 x 4 - 7). The consequence of this assumption about
algorithms is that we have not constructed a separate production system to make the
computations, although it would be easy to do so.'6

The model iItatte with input: to the connectionist: model in the lower
portion of Figure 2. The input consists of a single binary vector representing all
information In the multi-step problem Thus, pointers to more than one situton
typically occur. The connectionist network identifies the most salient situation, and
passes that Information to the feature identifier (represented In Figure 2 as the
smaller of the two produiction system). Using the output from the connectiontst
network together with the clause inlbrmution, this part of the model determines the
best configuration of dat to 1prePsen t the selected situation. Several configurations
may be possible. The production system selects a subset of clauses to represent each
one. If there am multiple coniurations, each one is then evaluated using the
original concins:model. For each configuration the production system creae
a new Input vector that contains only the information of the selected clauses. The
output: values associsoe ,d with eact Input vector are compared, and the Input vector
leading to the highest value Is selected as the immediate problem to be solvedt. The
identifie situation and its subset of clauses wre then passed to the plannin
component of the schema. lT6Is, ar knowledge (i.e. the production system) and
constraint knowledge (i.e., the connectionist network) interact to provide the
necessary Inforation tdot will be used to pian the solution.

A plan begins with the creation of a goal stack in which the top level goal
Is to produce a numerical solution. Additionsi goals on added to the stack and
removed as they are achieved. A umber o( dlflfrmat goals we addressed by the
production system. Some have to do with locat the unknown in the problem.
Others center on carrying out the qppropriae compiutaons Like feature ktnowledge
and constraint. knowledge, planning knowledg Is schema-spcfc The model uses

Its knowledge about the CuRen schema to develop plans for solving the problem.
Table I illustates a number of diflrwt goals and the steps the model take

to achieve them. The model -1eg - to solve dom first subproblem it recognizes. If
It is succesSibi at 0Mg poin, the soliffon Is pissed back to the Ownuing: component

6An additional reaso to ok the uoodebg af copotatiomal error s kthatbe adijects
whAM ------- we bmr Its"u rar* dime thsmwo Al of ow satechave

a~mptadabuaatprablerishing
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which then must determine whether the entire problem has been solved or only a
sub-problem. A number of things feed into this determination. First, the
connectionist network is called upon to find any other plausible situations after the
first one has been removed from the problem. A check is canted out to see if there
are additional unknowns anywhere in the known problem structure. If potential
subproblems are discovered, their clauses and relevant input information is fed back
into the model, and the entire cycle begins again. If no additional sub-problems are
recognized, the model produces as its answer the computed value for the last sub-
problem it solved. Table I contains a complete trace of the model's activity for a
multi-step problem.

The hybrid model is able to solve problems having more than one unknown.
Such problems are common in arithmetic and algebra, and they are frequently
studied because students do not routinely solve them easily. The different
components of the model pass information back and forth as necessary. For some
problems, a re-cycling through the connectionist network will be unnecessary
because only one configuration will be possible. For other problems, the model
may move back and forth between the connectionist network and the production
systems until It develops enough information to create a workable plan.

Thus far, the hybrid model successfully solves problems of the type
illustrated in Table L.. Extensions of the model to deal with more complex problems
are ongoing, as are comparisons of human and model solutions. The initial findings
are encouraging. The hybrid model presented here can solve single or multiple-step
problems, and it produces solutions that appear similar to human subjects' solutions.

t4



Tabl 1: Hybrid Model Output for a Multi-Step Problem

Model OuIpuk Amsoated Dewnpoaj of Osapuk
Joewo $100 in the state ioafty. h spent sme of it on tosProblem Tent

for his two cbildmnt. He bought a doll for Sue that cost U2S and
he bought a utuMfedbear for Ellen that cost S2&. How much of
his lottery winnain did he havm after he bought the toys?

111010000010100001001000100 Input Vector for Cannectionist hodel

owner Joel in Fiat cami
object dollars dolar 100.00000 noe
time 0

owner Joe Person Second Cause,
object dolars dole.UNKNON decrease;

toy toys UNKNOWN moe
time 1

owner Joe Ie,, M Third Clause
object amount dollars 25.000000 decrease

donl toy .00 in00 ease
time I

owner Joel pen Fourth Cause~
object amount dollars 23.00=0 decxeK

stuffied bear toy 1.00000 increase
time 1

owner Joe parm Fift cleat
object dole.s dolies UNKNOWN some
time 2

0369 0.38 0.301 0.230 0.1 -> OR First sub~poblm Identification by connectionist model.

Combo: I The Posible configurations *indicates the one that
Combo: 2 pelds the ighest activation value (Found via small
Combat 3 Production systm and evaluated with connctionist

model).

owner Jo ero mc helauses that contsibute to the coniration
object dole.n dog=ar UNKNOWN decrese selected by the coenectionist model as best. The

toy to" UNKNOWNmnoe identification of the GROUP situation and the clause
time 1 information is passe to the neat component of the model

which set the it"a god and detmines which values will be
oner Joe pmnc aed in solving the Problem.
object amountdoukeS AM00 acm

dl toys LCUOlflflfl
time 1

owner Joe p
objct am ountMas A0UWu

msi-o "i Soi r.0000
dm 1
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.................

Table 1 continued.

Modei Owit" Anotated Decript n of Oto".

EaterinEacuteRules IF {the top goal is SOLVE, the situation is GROUP,
Producton Rule: 25 and the number of subgroups is nor known)
Goal Stck. ID NUMBER-SUBGROUPS SOLVE THEN (add a new goal of identilying the number of
ProblemValues: UNKNOWN 25.00 28.00 subgrops)

IF {the number of subgroups is unknown and the goal
Prduction Rale: 26 is to find the number of subgroups)
Goal Stac: ID NUMBER-SUBGROUPS SOLVE THEN (count the number of subgroups and store the
ProblemValueg UNKNOWN 25.00 28.00 value)

IF (the goal is to find the number of subgroups and
Produchion Rule: 27 that number is now known)
GoalStack: SOLVE THEN (delete the goal from the goal stack)
ProblemValues: UNKNOWN 25.00 28.00

IF {the goal is SOLVE, the situation is GROUP, the
Production Rule: 28 number of subgroups is known, and there is an
Goal Stack: ID PART GR SOLVE unknown in the problem)
ProblemValuesT UNKN6OWN 25.00.0000 THEN (set a new goal to find out which part of the

problem is unknown)

IF (the answer i unknown, the goal is to identify where
Production Rale: 30 the unknown is located, and if it is in the
Goad Stack: SUPERoROUP ID PANr GROUP SOLVE s location)
ProblemValues: UNKNOWN 25.00 2.00 THEN (add the goal of computing the supergroup to the

goal Stack)

IF (the answer is unknown, and the goal is to find the
Production Ruile: 32 supegrou)
Goal-Stack: SUPERGROUP IDPART GROUP SOLVE THEN {add all subgroup values and store the result as the
ProblemVaaes: UNKNOWN 25.002 .00 answer)

IF (the goal is to find the supergroup, and the answer is
Production Ratli: 3 known)
Goal Stac SUPERGROUP ID PART GROUP SOLVE THEN (store this information in the problem values)
ProbnVolus: 53.00 25.00 28.0

IF (the goal i to find the supergroup and it is known)

Go.uti Stac : 34A~GOU OV THEN (delete the goal from the goal stack)Goal Stock IUD PART GROUP SOLVE
PtabimVeaosT: nW.0 25Z XW

(the goa is to identifythe mioing pat of a group
Production Rs: V Problem but there are no miming pars)
GoalStack SOLVE THEN (delete the goal from the Fol stack)
ProbinVatmos:530025.0028AM

F (the oal is to olve the problem but the are no
Productin Rails: 4 uakmm)
ProbleaValo S M 5 25O2 0 O THEN (remoe the goal from the gal stack)

0 IF Vtegal stack is empty)
/1dctn Ado: 0 THE N m the iner)
Pat Am - 51010M

The firstsmbwem bes mnlm
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Tabk Icontnued.~:~ : ~ he

Model OsmspuL Annewiad Dewrotion of Model Oustput:

owner Joe person The necessary clauses ate identified for the planing and
object dollars dolla= 1001000 none ecution components.
time 0

owner Joe person The system recopiZes that thtre is an unknown value for the
object dollars dollars 53.0000= decrease, object toy but disregards it in favor of the selected change

toys "oyUNKNOWN nowe Configuration.
time I

owner Joe person
object dollars dollars UNKNOWN none
time 2

IUh production begins a new cycle:Entering Execute~le EP (th. goal is to solve the problem; the
Production Rule: 1 situation isCHANG& and there is
Goal -Stack: ID PART CHANGE SOLVE an unknown value on the value list)
ProblemValueE 100053.00 UNI&OWN THEN (add a new goal of identifying w"id

part of tnhe Oe situation as unknown)

Production Rule: 16 IF (the poal isto dentify the which paen of the
Goal-StakEND VD PAR CHANCE SOLVE problem has an unknown and if the last
ProbleaValues: 10000 0UNKNOWN4 clement of the value -list is unknown)

THEN (add a new goal of finding the end result)

Prdctiont RUC 18 IF (if the goal is to find the end result and
Goal Stack: END ID PART CHANGE SOLVE th dieto of change is negat)
Problem~alues: 106.0053.00 UNNOWN THEN (set ANSWER to the difference between the

start-amount and the amount-of change)
Production Rule: 19 IF (the goad is to find the end result and thereGoal Stack END ID PAKRT CHANGE SOLVE is only one unknown valuein the value lWs
ProblemVaiues 100M0051047.00 and ifsa value is known for ANSWER)

THE8N (replace the uslavowa in the value lixt
with the value of ANSWER)I

Production Rule: 20 IF (the goal is to find the end reulit mid
Goal Slc ID IPA~r CHAINGE SOLVE there ae no unknowns in t value list)
ProbiemVal.*as 100.0053.0047.0 THEN (dlt the goal fran the Pal stack)

Rr~~OW 3e IF (the Poal isto identifya miig part but
GoalStack SOLVE ma am knowa)
ProblimVelms: 100.0050047.00 THEN (daies e n l romo the Pal stack)

Phodu-I' Rme4 IF fage Pal is 10solfe the pmublem but
ProblsaVaue N0 " 47.00 thwn aom an ")

Pa Am 47AODM THEN ("a the goal five the Val stack)

Plad Aww - 47.flUIF (o {pd sinkb amply)
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